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ANTI-INVARIANT SUBMANIFOLDS WITH
FLAT NORMAL CONNECTION

KENTARO YANO, MASAHIRO KON & IKUO ISHIHARA

1. Introduction

Anti-invariant, i.e., totally real, submanifolds of a Kaehlerian manifold have
been studied by Blair [1], Chen [2], Houh [3], Kon [4], [10], [11], Ludden [5], [6],
Ogiue [2], Okumura [5], [6], Yano {5}, [6], [8], [9], [10], [11] and others. In particu-
lar, anti-invariant submanifolds of complex space forms have been recently
studied by two of the present authors [10], [11].

The main purpose of the present paper is to study anti-invariant submanifolds
of complex space forms with parallel mean curvature vector and flat normal
connection, and to prove Theorems 1, 2, 3 and 4.

§ 2 contains preliminaries on field of frames convenient for the study of anti-
invariant submanifolds of a complex space form. In § 3 we study anti-invariant
submanifolds of a complex space form with flat normal connection, and prove
some lemmas. The purpose of § 4 is to prove some theorems on anti-invariant
submanifolds with parallel mean curvature vector and flat normal connection.
In § 5, the last section, we give some examples of anti-invariant submanifold
with parallel mean curvature vector and flat normal connection immersed in a
complex projective n-space CP™ or complex n-space C*, and prove our Theo-
rems 3 and 4.

2. Preliminaries

Let M be a Kaehlerian manifold of complex dimension n + p with almost
complex structure J. A real n-dimensional Riemannian manifold M isometrical-
ly immersed in M is said to be anti-invariant ot tetally real in M if JT (M) C
T (M)* for each point x of M, where T, (M) and T,(M)+ denote the tangent
space and the normal space to M at x respectively.

We choose a local field of orthonormal frames e,, - -, e,;¢€,.0, -+, €, 53
en=Je, -y u=JC i =JC, s s e = Je,,, iIn M in such a
way that, restricted to M, ¢,, - - -, e, are tangent to M. With respect to this field
of frames of M, let @', - - -, 0™; 0™, - - -, @"* P, @™, - - -, @™ @V, oL @R
be the field of dual frames. Unless otherwise stated, we use the following ranges
of indices:
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ABCD=1,---,n+p, 1% - (n+ p),
Lk Lt,s=1,.--,n,
abe,d=n+1,--- n4p 1% ..., (n+p¥*,
apyr=n+1.-n+p,
Lpyv=n+1, - n+p @+ D n+p*,
and the convention that when an index appears twice in any term as a subscript

and a superscript, it is understood that this index is summed over its range.
Then the structure equations of M are given by

@D dot = —of N\ &7, ws + of =0,
o+ 0l =0, o =0, o =0,

22 o + o =0, o =0k, o =o,

22 0+l =0, o =o0%, of =0,

(2.3) dof = —wi N o + 03, D4 = $K4:,0° N\ oP .

When we restrict these forms to M, we have

(2.4) 0*=0.
Since 0 = dw® = —o? N\ o', by Cartan’s lemma we can write w?¢ as
2.5 o} = ho’, hy = kg, .

From these formulas we obtain the following structure equations of M:

26) do' = —0' No?, doi= —wi Aot + 0%, 2% =4%RL0" N o,

J

27 Riy = Kby + 5 (s — i)
(2.8) do? = —* \ o + 29, 0% = 4R% 0" N o,
(2.9) R} = Ko + Z (h%k W — hihd) .

The forms (w?) define the Riemannian connection of M, and the forms (%)
the connection induced in the normal bundle of M. From (2.2) and (2.5) it fol-
lows that

(2.10) hi = hi, = R,

where we have written /%, in place of 4%, to simplify the notation. The second
fundamental form of M is represented by 4f,w'w’e,, and is sometimes denoted
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by its components A4$,. If the second fundamental form is of the form

3:,( 25k Mirel)/n, then M is said to be rotally umbilical. If hZ, is of the form A{; =
(s M)d,,/n, then M is said to be wmbilical with respect to e,. We call
(22 x hewel)/n the mean curvature vector of M, and M is said to be minimal if its
mean curvature vector vanishes identically, i.e., >, /%, = 0 for all a. We define
the covariant derivative 4%, of AZ, by

2.1hH hiw® = dhy, — hhel — B0t + hlet .

The Laplacian 4hf; of A%, is defined to be

(2.12) 4ng; = ; M >

where we have defined A7;;, by

2.13) heot = dh, — hi0b — hieb — hof + hiof .

In the sequel we assume that the second fundamental form of M satisfies
equations of Codazzi:

2.19 he — b, =0.

Then, from (2.13), we have

(2.15 hfe — M = hE R, + BT R, — AL RE, .
On the other hand, (2.12) and (2.14) imply that

(2.16) Ahg; = ; M = ; hiin -

From (2.14), (2.15) and (2.16) it follows that

2.17 Ay = 23 ey + MRy + Wiy, — MR ) -

Therefore we have

2.18) 33 hdhg; = (h&;hgwe; + hheRE 4+ BGAGRE . — hGHL R .

a,i,f a,i 5,k

If the ambient manifold M is of constant holomorphic sectional curvature c,
then the Riemannian curvature tensor K4qp, of M is of the form

(2.19) Kgop = 2¢(04c0sp — 04005c + Jacdzp — Jundse + 2J4ndcp) »

and the second fundamental form of M satisfies equations (2.14) of Codazzi.
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3. Flat normal connection

In this section we study the normal connection of a real n-dimensional anti-
invariant submanifold M of a complex space form M”*?(c), that is, of a com-
plex (n + p)-dimensional Kaehlerian manifold M of constant holomorphic sec-
tional curvature c.

If Rg,, = O for all indices, then the normal connection of M is said to be

flat.
From (2.19) we see, first of all, that

(3-1) Ki*kl =0 » K;‘kl =0 P Kim =0.
If the normal connection of M is ﬂat, then (2.9) and (3.1) imply that

(32) 2 (hhy — Ry =0, 30 (hihly — ki) = 0.

Moreover, using (2.9) and (2.10), we see that

(3~3) Z (hfikhgl - hézhgk) = Z (hgkhi-l - hithk) = —ic(ackasz - 5:1550 -

1 1

Proposition 1. Let M be an n-dimensional (n > 1) anti-invariant submanifold
of a complex space form M"*?(c). If the normal connection of M is flat, and M
is umbilical with respect to some e, then ¢ = 0.

Proof. If M is umbilical with respect to e,., then the second fundamental
form k¢, is of the form A%, = (3], hiy)d;;/n. Thus we have

25 (hiphy — hihi) = 0.

From this and (3.3) we see that ¢ = 0.
Lemma 1. Let M be an n-dimensional anti-invariant submanifold of a complex
space form M™*?(c). If the normal connection of M is flat, then we have

(-4 Riy = 3 (hluhly — Hihiy) -
Proof. From (2.7) and (2.9) we find
R = 5¢(0udy — 3udp) + 2 (Hihty — hiihly)
+ 2 (Bl — Bl

= R?':kl + Z; (hékh;‘l - hfz}ljk) .

Since the normal connection of A is flat, we have R, = 0 and hence (3.4).
In the sequel, we put 4, = (h%), 4, being a symmetric matrix.
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Lemma 2. Let M be an n-dimensional anti-invariant submanifold of a com-
plex space form M™*?(c) (¢ # 0). If the normal connection of M is flat, then M
is umbilical with respect to all e,.

Proof. From (3.2) we see that 4,4, = A,4, and 4,4, = 4,4, for all 2 and
- Thus we can choose a local field of orthonormal frames with respect to which
A, and all 4, are diagonal, i.e.,

hy 0 I 0

(3~5) 4, = . 5 4, = .

0 Ha 0 i
Putting ¢t = /and k& = 1 in the first equation of (3.2) and using (3.5), we find
(3-6) (hfl - h;:)hiz =0.

On the other hand, putting t = k = 1 and s = / = 1 in (3.3) and using (3.5),
we have

(3.7 (hy, — hhy = —4c .

Since ¢ # 0, (3.7) implies that /], %= 0. From this fact and (3.6) we see that A,
=R, (t =2, --,n) forall 2. Thus M is umbilical with respect to e, for all 2.

Lemma 3. Let M be an n-dimensional anti-invariant submanifold of a complex
space form M ?(c) (¢ # 0). If the normal connection of M is flat, then we have

; 1
(3.8) Ry, = ?.; (Tr Al)z(aikaﬂ — duls) -

Proof. From Lemma 2 we see that 4}, = (Tr 4,)d,,/n for all 2. Therefore
(3.4) implies (3.8).

If, in Lemma 3, n > 3, then Y, (Tr A4,) is constant. Therefore we have

Proposition 2. Let M be an n-dimensional (n > 3) anti-invariant submanifold
of a complex space form M"*?(c) (c # 0). If the normal connection of M is flat,
then M is of constant curvature.

If M is minimal, then Tr A, = 0 for all 2. Thus we have, by (3.8),

Propeosition 3. Let M be an n-dimensional anti-invariant minimal submanifold
of a complex space form M"**(c) (¢ + 0). If the normal connection of M is flat,
then M is flat.

4. Parallel mean curvature vector

Using the results obtained in the previous section, we can prove
Theorem 1. Let M be an n-dimensional (n > 3) anti-invariant submanifold
of a complex space form M™*?(c) (c # 0) with parallel mean curvature vector. If
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the normal connection of M is flat, then M is a flat anti-invariant submanifold of
some M"(c) in M™*?(c), where M™(c) is a totally geodesic complex submanifold
of M"*%(c) of complex dimension n.

Proof. Since n > 3, Y, (Tr A4,)* is constant. On the other hand, from (2.7)
and (3.8), we have

@y  Plyrray = %—n(n — De+ 2 (Tr 4y — 3 (hy)
n i a a,t,]
Therefore the square of the length of the second fundamental form of M is

constant, i.e., >, ; (7)) = constant. From this we see that

(4.2) . Z] (h50)" +.2 hdhy; = 54 55 (b)) =

)

Substituting (3.8) into (2.18) and using (4.2), we obtain
1

Z (hzﬂr = _";l’z" Z): (TI‘ Az)za;j [n(h )Z hgz ]
“.3) = — L onaray 3 ey — k)
n B I

- — Loz @maynz e —my gy

To get the second line of (4.3), we have used Lemma 2. Since M is not umbil-
ical with respect to each e, by Proposition 1 and ¢ # 0 by the assumption, we
have .. (hi; — h%;)* > 0. Therefore we see that 42, = 0, that is, the second
fundamental form of M is parallel and Tr 4, = 0, which implies that 4, = 0
for all 2. From these and the fundamental theorem of submanifolds, M is an
anti-invariant submanifold of M "™(c), where M*(c) is a totally geodesic com-
plex submanifold of M™*?(c) of complex dimension n. Moreover, since 4, = 0
for all 2, Lemma 3 shows that M is flat. From these considerations we have
our assertion.

When n = 2, we need the assumption that M is compact. In this case we
have

Theorem 2. Let M be a compact anti-invariant surface of a complex space
Jorm M**?(c) (¢ + 0) with parallel mean curvature vector. If the normal connec-
tion of M is flat, then M is a flat anti-invariant surface of some M*(c) in M**?(c),
where M*(c) is a complex 2-dimensional totally geodesic submanifold of M**?(c).

Proof. Since M is compact, we have

2 (ol = —) X hidhil .

M oa,i, j,k Mo, g

Using this and an argument quite similar to that used in the proof of Theorem
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1, we have our assertion.

When ¢ = 0, we have the following result under an additional assumption
on A,.

Proposition 4. Let M be an n-dimensional (n > 3) anti-invariant submanifold
of a flat complex space form M"*?(0) with parallel mean curvature vector and
flat normal connection. If M is umbilical with respect to all e,, then either M is a
flat anti-invariant submanifold of some M™(0) in M"**(0), where M™(0) is a flat
totally geodesic complex submanifold of M"*?(0), or M is a totally umbilical
anti-invariant submanifold.

Proof. From the assumption and (3.4) we have (3.8), so that (4.3) holds. If
Tr A, = 0 for all 2, then by (3.8) M is flat and immersed in some M™(0) as an
anti-invariant submanifold. If Tr 4, #+ O for some 2, then we have

2 [Z (R — h5)) + n i; (hgj)Z] =0.

¢ i>F
From this we conclude that 4., = 4%, Ai, = 0 (i # j), so that each e,. is an
umbilical section. Thus M is totally umbilical.

Remark. If, in Proposition 4, M is totally umbilical and » > 1, then we have
A, = 0 for all ¢ (see [10, p. 218)).

Propesition 5. Let M be a compact anti-invariant surface of a flat complex
space form M?**?(0) with parallel mean curvature vector and flat normal connec-
tion. If M is umbilical with respect to all e,, then either M is a flat anti-invariant
surface of some M*(0) in M**?(0), where M*(0) is a flat totally geodesic complex
submanifold of M***(0), or M is a totally umbilical anti-invariant submanifold.

5. Flat anti-invariant submanifolds

In this section we give some examples of flat anti-invariant submanifolds
with parallel mean curvature vector and flat normal connection immersed in
CP" or C™.

First of all, we describe some properties of Riemannian fibre bundles.

Let M be a 2m + 1)-dimensional Sasakian manifold with structure tensors
(¢, &, 1, &) (cf. [7]). Then they satisfy

FX =X+ X)), ¢¢=0, 9gX)=0, » =1,
g(gX, ¢Y) = 2(X, 1) — y(Xp(Y) , n(X) = g(X, &)
for any vector fields X and Y on M. Moreover,
Vié =¢X, (FxdY = —8X, Y)E + 9()X = R(X, §)Y ,

where 77 denotes the operator of covariant differentiation with respect to g, and
R the Riemannian curvature tensor of M. If M is regular, then there exists a
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fibering z: M — M/& = N, N denoting the set of orbits of &, which is a real
2m-dimensional Kaehlerian manifold. Let (J, G) be the Kaehlerian structure of
N, and let * denote the horizontal lift with respect to the connection 7. Then
we have

(5.1) (JXP* = gX*,  g(X* Y¥) =G(X, )

for any vector fields X and ¥ on N. Let P’ be the operator of covariant differ-
entiation with respect to G. Then

(5.2) PrYY* = — ¢l 1 Y* = F.Y* + g(Y*, gX%)E .

Let M be an (n + 1)-dimensional submanifold immersed in M, and N an
n-dimensional submanifold immersed in N. In what follows we assume that M
is tangent to the structure vector field & of M, and there exists a fibration =: M
— N such that the diagram

MM

T 1 lTL
v Iy

1

N —N

commutes, and the immersion 7 is a difftomorphism on the fibres. Let g and G
be the induced metric tensor fields of M and N respectively. Let V (resp. I’’) be
the operator of covariant differentiation with respect to g (resp. G). We denote
by B (resp. B’) the second fundamental form of the immersion i (resp. i) and
the associated second fundamental forms of B and B’ will be denoted by A
and A’ respectively. The Gauss formulas are written as

(5.3) VLY ="r,Y+ B(X,Y), Po¥* = FY* + B(X* Y¥),
for any vctor fields X and ¥ on N. From (5.2) and (5.3) we find that
(5.4) PeX)* = — gl Y%, (BUX, Y)* = B(X*, Y%).

Let D and D’ be the operators of covariant differentiation with respect to
the linear connections induced in the normal bundles of M and N respectively.
For any tangent vector field X and any normal vector field ¥ to N, we have the
following Weingarten formulas

(5.5) ViV = —A%X 4+ DV, VoV*¥ = —A,,X* 4+ D, V¥,
From (5.2) and (5.5) it follows that

(5.6) (AL X% = — @A, X*,  (DV)* = D V* |
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Since the structure vector field £ of M is tangent to M, we have, for any vector
field X tangent to M,

(5.7 VXS =X = V& 4 B(X, §) .

Putting X = £ in (5.7), we see that B(¢, &) = 0. Now we take an orthonormal
frame e, - - -, e, for T, (M). Then ef, - - ., e¥, & form an orthonormal frame

3

for T,(M). Let m and w’ be the mean curvature vectors of M and N respec-
tively. Then (5.4) and (5.9) imply

(my* = 33 (Blew e = 3] BleF, ef) + B &) =m,

that is,

(5.8) my* =m .
From (5.6) and (5.8) it follows that

(5.9 (Dem’ V¥ = Dyum .

In the sequel, we prove some lemmas for later use. First of all, we have, by

(5.1,

Lemma 4. M is an anti-invariant submanifold of M if and only if N is an anti-
invariant submanifold of N.

Lemma 5. Let M and N be anti-invariant submanifolds. Then the Riemannian
curvature tensors R and R’ of M and N respectively satisfy

(5.10) (R(X, YZ)* = R(X*, Y¥)Z* .
Proof. From (5.7) we see that the vector field ¢ is parallel on M, i.e., V& =
0 (see [12]). Thus we have
Ve Y*) = Vg (Y*, §) — g(Y*, V36) = 0.
From this and (5.4) we get (FLY)* = F,.Y*, which implies
(R(X, ZY* = PV yZ — ViV Z — Vig i Z)*
- (VX*Vy*Z* — VYwVX*Z* - V[X*vy*jz*)
= R(X*, Y¥)Z* .
This gives (5.10).
From (5.10) and the fact that ¢ is parallel on M, we have
Lemma 6. Let M and N be anti-invariant submanifolds. Then M is flat if and

only if N is flat.
Lemma 7. Let M be an (n + 1)-dimensional anti-invariant submanifold of a
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(2n + 1)-dimensional Sasakian manifold M, and N be an n-dimensional anti-
invariant submanifold of a real 2n-dimensional Kaehlerian manifold N. Then the
normal connection of M is flat if and only if the normal connection of N is flat.

Proof. From the assumption on the dimension we see that M is flat if and
only if the normal connection of M is flat, and N is flat if and only if the normal
connection of N is flat (cf. [10], [12]). From this and Lemma 6 we have our
assertion.

Lemma 8. Let M be an (n + 1)-dimensional anti-invariant submanifold of a
(2n + 1)-dimensional Sasakian manifold M, and N be an n-dimensional anti-
invariant submanifold of a real 2n-dimensional Kaehlerian manifold N. Then the
mean curvature vector m of M is parallel if and only if the mean curvature vector
m’ of N is parallel.

Proof. 1If m is parallel, (5.9) implies that s’ is also parallel. Suppose that
m’ is parallel. Then, from (5.9), we have D,.m = 0. Therefore, we need only to
prove that D.m = 0.

First of all, by the Weingarten formula we have

Dy¢Y = VypY + ApX = 9(NX — g(X, V) + VY + $B(X, ¥) + A X .
Comparing the tangential and normal parts, we have
5.11) DY = ¢l Y .

On the other hand, since R(X, &)Y = pn(Y)X — g(X, Y)¢ is tangent to M for
any tangent vector fields X, ¥ to M, we have

(5.12) FxB)E, Y) = (V. B)X, Y) .
We also have, from (5.7),
(5.13) V=0, ¢X=BXE&.

Lete, ---,e,,, be an orthonormal frame for 7,(M), and denote by the same
letters local extension vector fields of this frame which are orthonormal and
covariant constant with respect to I/ at x ¢ M. Then, using (5.11), (5.12) and
(5.13), we obtain

Dun = z W B)e,, ) = 2 . BYE, e)

n+1 n+1

= Z Dei¢ei = Z ¢Veiei =0
=1 =1

at each point x of M. Therefore we have D.m = 0, and hence m is parallel.
Example 1. Let SYr) = {z; e C:|z,f = ri},i=1,---,n + 1. We consider
M = SYr) X -+ X SYr,,,)in C**!'such that r? + -.. + r2,, = 1. Then
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M™*'is a flat submanifold of S***! with paralle]l mean curvature vector and
flat normal connection. Moreover M is an anti-invariant submanifold of S****
and tangent to the structure vector field & of S***' (see [12]). Now we put
M™*/& = M7, Then the following diagram is commutative:

n+1 ! 2n+1
Mt —s 8

ﬁl J 4
Y v

Mr 5 CP"

By Lemmas 4, 6, 7 and 8, M7 is a flat anti-invariant submanifold of CP* with
paralle]l mean curvature vector and flat normal connection.

Example 2. Let S'(r) ={z,eC:lz; =ri},i=1,---,n. Then M" =
SY(r,) X - -+ X SYr,) is a flat anti-invariant submanifold of C™ (see [10]).

Theorem 3. Let M be a compact n-dimensional anti-invariant submanifold of
CP™*? with parallel mean curvature vector. If the normal connection of M is flat,
then M is M7 of some CP™ in CP™*?,

Proof. By Theorems 1, 2, M is a flat anti-invariant submanifold of a CP"
in CP"*?_ Therefore, from Lemmas 4, 7, 8, z~*(M) is a flat anti-invariant sub-
manifold of $*"** with parallel mean curvature vector and flat normal connec-
tion. By [12, Theorem 6.1] z=(M) is S'(r) X -+ X SHr,. ), Fi+ -+ + ri.,
= 1. Consequently M is congruent to M7.

Theorem 4. Let M be a compact n-dimensional anti-invariant submanifold of
C™*? with parallel mean curvature vector and flat normal connection. If M is
umbilical with respect to all e,, then M is S"(r;)) X +-- X S"r,)ina C*in C™*?
or S™(r).

Proof. From Propositions 4, 5, we see that M is flat or totally umbilical.
If M is flat, then, by a theorem of [10] and [11], M is S'(r)) X --- X S'(r,) in
a C*in C**?. If M is totally umbilical, then M is obviously S™(r).
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